

Oscillators Using Magnetostatic-Wave Active Tapped Delay Lines

CHANG-LEE CHEN, MEMBER, IEEE, ALEJANDRO CHU, LEONARD J. MAHONEY, WILLIAM E. COURTNEY, SENIOR MEMBER, IEEE, R. ALLEN MURPHY, MEMBER, IEEE, AND JAMES C. SETHARES, SENIOR MEMBER, IEEE

Abstract — A novel oscillator that combines a magnetostatic wave (MSW) tapped delay line with GaAs monolithic microwave integrated circuits (MMIC's) has been fabricated. This oscillator incorporates an external feedback loop which is extremely short and provides multiple outputs delayed in time by the MSW delay line. The oscillator is tunable from 2.76 to 2.95 GHz and the 3-dB bandwidth of the oscillation is approximately 10 kHz.

I. INTRODUCTION

DEVICES based on the propagation of magnetostatic waves (MSW's) have the potential of performing signal processing at microwave frequencies, a frequency range where surface acoustic wave devices do not operate [1]. MSW delay lines provide useful time delays up to approximately 20 GHz, and because they are planar they can be integrated with other components, such as GaAs monolithic microwave integrated circuits (MMIC's). In particular, a tunable oscillator using MSW delay lines is attractive because of its simple structure, superior phase-noise characteristics [2], and large tunable bandwidth. Tunable oscillators using MSW delay lines, external amplifiers, and directional couplers have been reported [3], [4]. However, undesirable frequency jumping was observed within the frequency tuning range because of the electrical length of the feedback loop.

We have developed a novel tunable oscillator that integrates MESFET amplifiers and MSW transducers on a single GaAs chip. An active tapped delay line was realized using five GaAs MMIC chips and one gallium gadolinium garnet (GGG) substrate with an epitaxially grown yttrium ion garnet (YIG) film to support MSW propagation. An oscillator was formed by coupling the signal from the first tap to the input amplifier of the delay line. The additional delay-line taps provide time-delayed outputs of the oscillator. Because monolithic-circuit chips were used and no

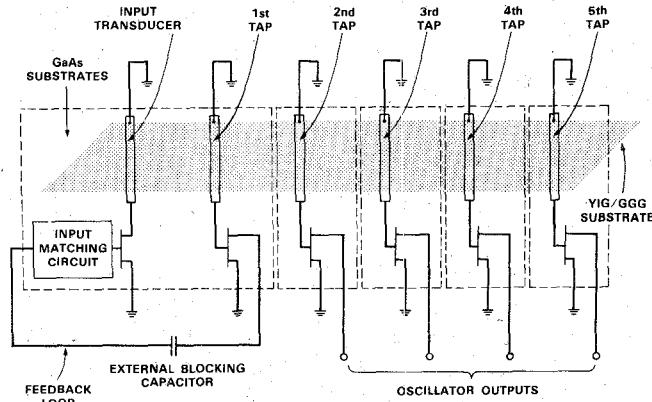


Fig. 1. Schematic diagram of the oscillator using an active tapped delay line.

directional coupler is required, the oscillator is compact and the feedback loop is short. The time delay of the multiple outputs is determined by the spacing between taps and by the applied magnetic field. In this work we present a new approach to the fabrication of a tunable MSW oscillator and also demonstrate the feasibility of integrating MSW devices with GaAs MMIC's.

II. OSCILLATOR DESIGN AND FABRICATION

The schematic diagram of the oscillator is shown in Fig. 1. The active tapped delay line was constructed using an input GaAs chip incorporating the input amplifier and output circuitry for the feedback tap (tap 1) and four other GaAs chips incorporating only the output circuitry for the oscillator outputs (taps 2–5). The circuit diagram and a photograph of the completed GaAs MMIC chip are shown in Fig. 2(a) and (b), respectively. The design and fabrication of the input amplifier have been previously reported [5]. The input circuitry consists of a 500- μ m-wide MESFET (FET 3) with a distributed matching network connected to its gate and the input MSW transducer connected to its drain. This circuit provides convenient impedance matching to the MSW delay line and produces amplification of the input signal. The output transducer of the delay line is connected to the gate of FET 1 and gain modulation is provided by a shunting MESFET (FET 2), which is used as a variable resistor. The spacing between

Manuscript received March 28, 1988; revised July 11, 1988. This work was supported by the Rome Air Development Center.

C. L. Chen, L. J. Mahoney, W. E. Courtney, and R. A. Murphy are with the Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173.

A. Chu was with the Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173. He is now with M/A-COM, Inc., Burlington, MA 01803.

J. C. Sethares is with the Rome Air Development Center, Hanscom Air Force Base, MA 01731.

IEEE Log Number 8824256.

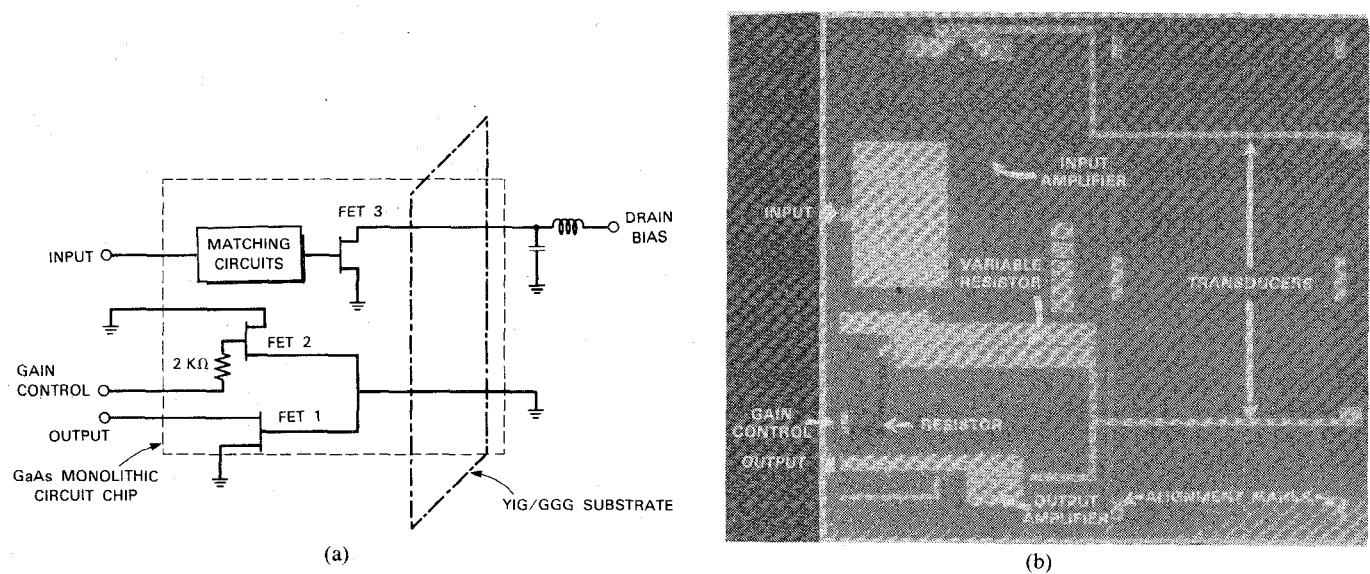


Fig. 2. GaAs MMIC used for the MSW active delay line. (a) Circuit diagram. (b) Photo of the completed chip. Chip size is $4.5 \times 4.5 \text{ mm}^2$.

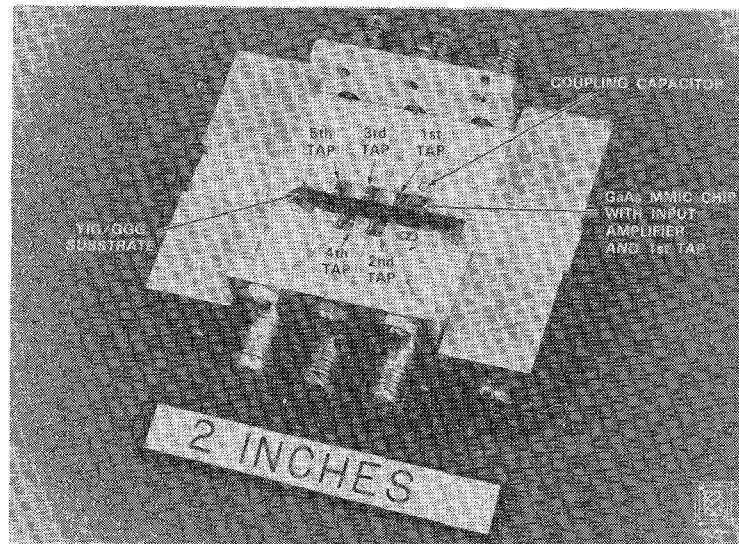


Fig. 3. Assembled MSW active tapped delay line using GaAs MMIC chips and a YIG/GGG substrate. The smaller GaAs chips, which are the output portion of the complete circuit, are used for taps 2-5.

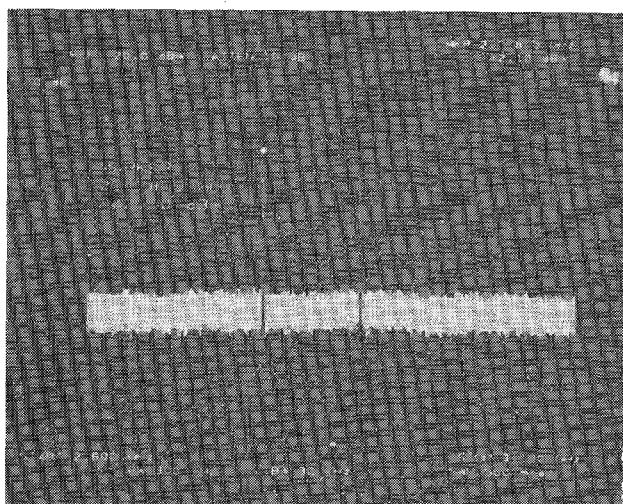


Fig. 4. Oscillator output taken from tap number 2. Two oscillation modes are separated by 100 MHz in frequency.

the input and output transducers on the input GaAs chip is 2.5 mm.

As shown in Fig. 3, the GaAs chips were mounted on a metal shim with all the transducers aligned to a 2-mm-wide YIG/GGG substrate, which was placed on top of the transducers with the 50- μm -thick YIG film facing down. The distance between each output tap was 2 mm and the end of each transducer was grounded by bond wires. The gap between the transducers and the YIG film was determined by small GaAs chips that supported the YIG/GGG substrate at both ends. For this tapped delay line the gap was approximately 20 μm . The magnetic field was provided by an electromagnet and was parallel to the YIG film, so that only the magnetostatic surface wave propagated. The feedback loop for the oscillator was completed by bonding wires from the output of the first tap to the input amplifier through a blocking chip capacitor as illustrated in Fig. 1.

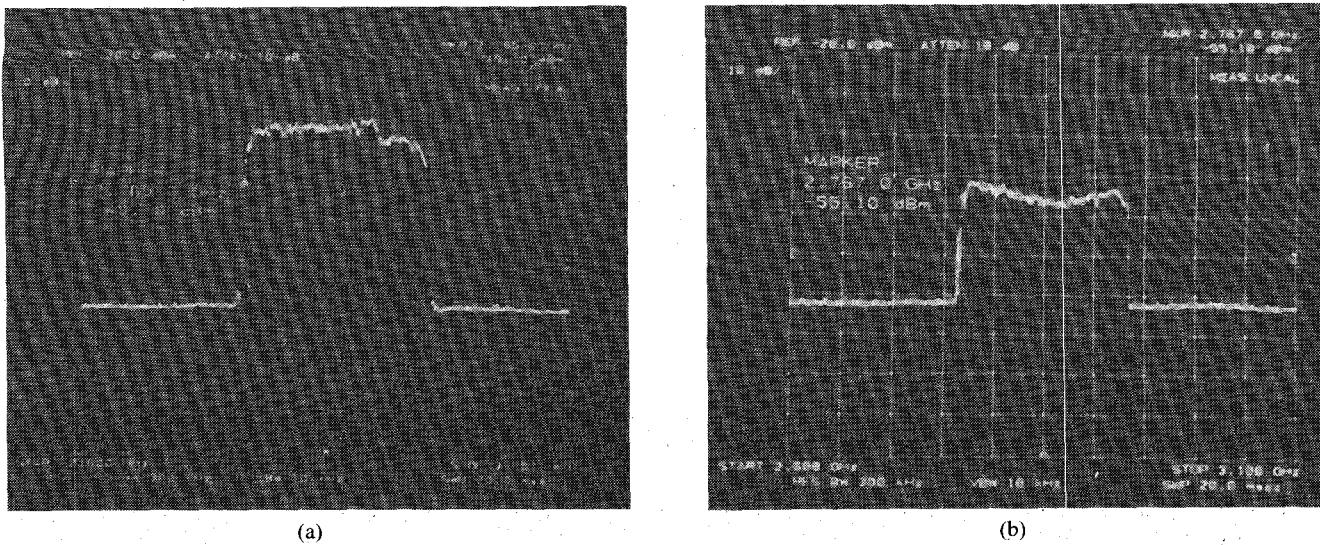


Fig. 5. Measured tunable range of the oscillator using a spectrum analyzer. A maximum-hold feature, which stores the greatest signal measured at each frequency as the magnetic field is increased, is used to show the oscillation frequency range. (a) Tap 2. (b) Tap 4.

III. EXPERIMENTAL RESULTS

The output gain at each tap of the delay line can be varied by changing the drain-source resistance of FET 2 or the bias applied to the drain of FET 1. When a signal was applied to the input amplifier with the feedback loop disconnected, a maximum gain of 3.5 dB was measured at the first tap of the delay line at 2.5 GHz. The measurement was performed with 200 G of applied magnetic field. Therefore, GaAs MESFET's provided the net gain needed to sustain the oscillation. More than 12 dB of gain variation was achieved by changing the drain bias of FET 1 from 3 to 0.2 V. At the same frequency an average time delay of 7.8 ns between each tap was measured, and as expected, did not change with the bias applied to the drain of the output FET.

Because all the components are assembled inside a small package and no directional coupler is used, the electrical length of the feedback loop is extremely short. From measured amplifier data, this external electrical delay is estimated to be 0.1 ns, which is approximately 1 percent of the total time delay of the MSW delay line. For comparison, the external delay was approximately between 10 and 20 percent of the total time delay in a previously reported work [4] in which an external amplifier and a directional coupler were used.

The outputs of the oscillator were obtained from taps 2 through 5. The phase difference between these outputs is determined by the propagation delay of the MSW between the taps. Fig. 4 shows the oscillator output taken from tap 2. Two oscillation modes are observed, separated by approximately 100 MHz. These two modes exist because the single-line wide-band transducers which were used do not provide adequate frequency discrimination. The measured output power of the oscillation at 2.78 GHz is -42.1 dBm and the 3-dB bandwidth is approximately 10 kHz, demonstrating that this is a high-*Q* oscillator. The frequency of

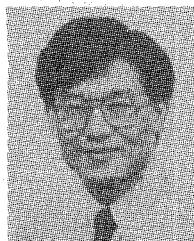
the oscillator can be tuned continuously from 2.76 to 2.95 GHz by changing the applied magnetic field from 210 to 280 G. No frequency jumping was observed and we believe that this oscillator can operate over a much wider frequency range without frequency jumping because of the short length of the external circuit. The current tuning range of 190 MHz was limited by the gain and bandwidth of the amplifiers in the feedback circuit. By reducing the gain from the first tap, the second oscillation can be suppressed and a single-mode oscillator can be created at the expense of a smaller tunable range.

Spectrum analyzer displays in Fig. 5(a) and (b) show the measured outputs from taps 2 and 4, respectively, as the magnetic field varies from 210 to 280 G. Notice that the tunable range of the two taps is nearly identical, while the average output power from tap 4 is approximately 14 dB lower than that from tap 2. This attenuation is estimated to arise from the nonuniformity of the magnetic field (~ 8 dB), the power coupled to tap 3 which lies between taps 2 and 4 (~ 2 dB), and the propagation loss of the 4-mm-long MSW delay line between taps 2 and 4 (~ 4 dB).

IV. CONCLUSIONS

We have, for the first time, fabricated a GaAs MMIC designed specifically for use with MSW devices and demonstrated that the performance of MSW devices can be greatly improved by integrating them with GaAs MMIC's. This new combination of MSW devices and GaAs MMIC's has been used to construct a five-tap MSW active delay line and to realize a novel MSW delay-line oscillator by feeding the signal from the first tap back to the input amplifier. This provides a high-*Q* tunable oscillator with multiple outputs having a built-in time delay. This unique property of the oscillator may be very useful in phased array technology [1]. Because of the use of GaAs

MMIC's and the elimination of the directional coupler, the external electrical length is extremely short. Therefore, this oscillator is expected to operate in a large frequency range without frequency jumping. The performance of the current oscillator is limited by unoptimized amplifier and transducer designs. If a wide-band amplifier is used, an MSW delay-line oscillator with tunable bandwidth beyond 20 GHz is feasible [3], and a single-mode oscillator can be achieved by adopting multi-finger narrow-band transducers [6].


ACKNOWLEDGMENT

The authors would like to thank L. Cociani, D. J. Burrows, D. J. Landers, and K. M. Molvar for their technical support.

REFERENCES

- [1] J. C. Sethares, "Magnetostatic wave devices and applications," *J. Appl. Phys.*, vol. 53, pp. 2646-2651, Mar. 1982.
- [2] R. L. Carter, J. M. Owens, and D. K. De, "YIG oscillators: Is a planar geometry better?", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 1671-1674, Dec. 1984.
- [3] W. S. Ishak, "4-20 GHz magnetostatic wave delay line oscillator," *Electron. Lett.*, vol. 19, pp. 930-931, Oct. 1983.
- [4] J. P. Castera, "Tunable magnetostatic surface-wave-oscillators," *IEEE Trans. Magn.*, vol. MAG-14, pp. 826-828, Sept. 1978.
- [5] A. Chu *et al.*, "A two-stage monolithic IF amplifier utilizing a Ta_2O_5 capacitor," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 21-26, Jan. 1983.
- [6] J. C. Sethares, M. R. Stiglitz, and I. J. Weinberg, "Magnetostatic wave oscillator frequencies," *J. Appl. Phys.*, vol. 52, pp. 2273-2275, Mar. 1981.

✖

Chang-Lee Chen (S'78-M'82) received the B.S. degree in electronic engineering from National Chiao-Tung University, Taiwan, Republic of China, in 1974, the M.S. degree from the University of Cincinnati, Cincinnati, OH, in 1978 and the Ph.D. degree from the University of Michigan, Ann Arbor, in 1982, all in electrical engineering.

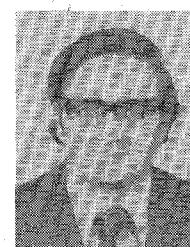
He has been a staff member in the Microelectronics Group at Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, since 1982. He is presently involved in the development of high-speed devices, GaAs monolithic integrated circuits, and processing techniques.

✖

Alejandro Chu received the B.Sc. degree in 1970, and the M.Sc. and the E.E. degrees in 1972, all in electrical engineering, from the Massachusetts Institute of Technology (M.I.T.), Cambridge. He received the Ph.D. degree from Stanford University, Stanford, CA, in 1977. His dissertation was in the field of ion implantation. In 1987 he graduated from the Program for Management Development at Harvard University, Graduate School of Business Administration, Boston, MA. From 1972 to 1978 he worked at the Hewlett-

Packard Company on the development of a wide-band 18-GHz sweeper and microwave components such as modulators, frequency multipliers, and wide-band amplifiers. In 1975 he joined the Hewlett-Packard Technology Center where he was responsible for the characterization of GaAs FET's and later for the fabrication of GaAs integrated circuit. From 1978 to 1984 he was a Member of the Technical Staff at Lincoln Laboratory, M.I.T., Lexington, MA, where he was responsible for the development of GaAs devices and monolithic circuits for a millimeter-wave transceiver. In 1984 he joined M/A-COM, Inc., Burlington, MA, to work on the transfer of GaAs monolithic circuit technology to manufacturing. He is presently Director of Technology Center in the Advanced Programs and Development Group.

✖

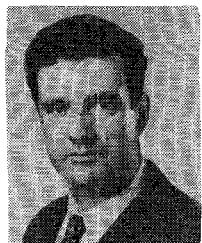


Leonard J. Mahoney was born in Norwood, MA, on October 7, 1944. He graduated from Wentworth Institute, Boston, MA, in 1964. He received the A.A. and B.S. degrees (with honors) in mechanical engineering from Northeastern University, Boston, MA, in 1973 and 1975, respectively.

He joined the Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, in 1972, where he has worked on the fabrication of a number of microwave devices, including GaAs

IMPATT diodes, surface-oriented mixer diodes, and FET's. He is currently an Assistant Staff Member in the Microelectronics Group working on process development and fabrication of GaAs IC's for millimeter-wave applications.

✖


William E. Courtney (SM'86) was born in Lurgan, County Armagh, N. Ireland, on October 3, 1936. He received the B.Sc. degree (with honors) in physics in 1959 and the Ph.D. degree in electrical engineering in 1963 from the Queen's University of Belfast, N. Ireland.

From 1963 to 1966 he was a Department of Scientific and Industrial Research Fellow and Ministry of Aviation Post-Doctoral Research Fellow in the Department of Electrical Engineering, University of Leeds, England. From 1966 to 1968 he was a Post-Doctoral Fellow in the Center for Materials Science and Engineering, Massachusetts Institute of Technology (M.I.T.), Cambridge. He has been a Member of the Technical Staff at the Lincoln Laboratory, M.I.T., Lexington, MA, since 1968 and is presently a member of the Sensor Technology Group.

R. Allen Murphy (M'73) was born in St. Louis, MO, on February 24, 1941. He received the B.S. degree from Washington University, St. Louis, MO, in 1963, and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, in 1964 and 1971, respectively, all in electrical engineering.

He has been a Member of the Technical Staff at Lincoln Laboratory, M.I.T., Lexington, MA, since 1971. He has worked on the design and fabrication of a number of microwave devices. These include 40-GHz GaAs IMPATT diodes, 3-GHz annular modified-profile GaAs IMPATT diodes, GaAs varactor diodes for 40-GHz parametric amplifiers, surface-oriented mixer diodes for millimeter- and sub-millimeter-wavelength operation, and the permeable base transistor. He is currently the Leader of the Microelectronics Group at Lincoln Laboratory. His responsibilities include the development of semiconductor devices for microwave and high-speed applications and silicon charge-coupled devices for signal-processing and imaging applications.

James C. Sethares (M'65-SM'82) was born in Hyannis, MA, in 1928. He received the B.S. degree in electrical engineering from the University of Massachusetts in 1959, and the M.S. degree in electrical engineering from Massachusetts Institute of Technology, Cambridge, in 1962.

He then joined the Microwave Physics Laboratory of Air Force Cambridge Research Laboratories, Hanscom Air Force Base, Bedford, MA,

where he is now employed as a Research Physicist in the Electromagnetic Sciences Directorate of Rome Air Development Center. For many years, he was a Visiting Lecturer in mathematics at Boston University and a Visiting Lecturer in electromagnetics at the University of Lowell. In the past, he has worked on dielectric resonators, acoustic waves for nondestructive evaluation, and cholesteric liquid crystals for microwave and millimeter-wave power pattern visualization. More recently, his main area of interest is microwave magnetics including magnetostatic wave technology.